Members
Overall Objectives
Research Program
Application Domains
Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Research Program

Simplified models and inverse problems

The medical and clinical exploration of the electrical signals is based on accurate reconstruction of the typical patterns of propagation of the action potential. The correct detection of these complex patterns by non-invasive electrical imaging techniques has to be developped. Both problems involve solving inverse problems that cannot be addressed with the more compex models. We want both to develop simple and fast models of the propagation of cardiac action potentials and improve the solutions to the inverse problems found in cardiac electrical imaging techniques.

The cardiac inverse problem consists in finding the cardiac activation maps or, more generally the whole cardiac electrical activity, from high density body surface electrocardiograms. It is a new and a powerful diagnosis technique, which success would be considered as a breakthrough in the cardiac diagnosis. Although widely studied during the last years, it remains a challenge for the scientific community. In many cases the quality of reconstructed electrical potential is not sufficiently accurate. The methods used consist in solving the Laplace equation on the volume delimited by the body surface and the epicardial surface.We plan to

Of cours we will use our models as a basis to regularize these inverse problems. We will conside the follwong strategies:

Additionnaly, we will need to develop numerical techniques dedicated to our simplified eikonal/levl-sets equations.